一般地说,电机轴承的寿命是指滚动轴承在实际的服务条件下、能持续保持满足主动要求的工作性能和工作精度的特长服务期限。
这个理论的重大意义不仅在于它提供了一个比Imos寿命方程更为可靠的预测现代轴承寿命的工具,而且在于它展示了所有滚动轴承的疲劳寿命都有着可观的开发潜力,并展示了开发这种潜力的途径,因而对轴承产品的开发、质量管理和应用技术有着深远的影响。
但是,轴承的无限只有在实验室的条件下才有可能“实现”,而这样的条件对于在一定工况下现场使用的轴承来说,既难办到也太昂贵。
现场使用轴承,其工作负荷往往大于其相应的疲劳持久性极限负荷,在工作到一定的期限后,或晚或早总会由于本身材料达致电疲劳极限,产生疲劳剥落而无法继续使用。即使某些轴承的工作负荷低于其相应的持久性极限负荷,也会由于难以根绝的轴承污染问题而发生磨损失效。总之,现场使用中的轴承或多或少总不能充分具备上述实验室所具备的那些条件,而其中任一条件稍有不足,都会缩短轴承的可用期限,这就产生了轴承的寿命问题。
根据最新的电机轴承疲劳寿命理论,一只设计优秀、材质卓越、制造精良而且安装正确的轴承。只要其承受的负荷足够轻松,则这个轴承的材料将永远不会产生疲劳损坏。因此,只要轴承的工作环境温度适宜而且变化幅度不大,绝对无固体尘埃、有害气体和水分侵入轴承,轴承的润滑充分而又恰到好处,润滑剂绝对纯正而无杂质,并且不会老化变质,则这个轴承将会无限期地运转下去。
1、通过声音进行识别
通过声音进行识别需要有丰富的经验。必须经过充分的训练达到能够识别轴承声音与非轴承声音。为此,应尽量由专人来进行这项工作。用听音器或听音棒贴在外壳上可清楚地听到轴承的声音。
2、通过工作温度进行识别
该方法属比较识别法,仅限于用在运转状态不太变化的场合。为此,必须进行温度的连续记录。出现故障时,温度不仅会升高,还会出现不规则变化。该方法与声音识别方法并用为宜。
3、通过润滑剂的状态进行识别
对润滑剂采样分析,通过其污浊程度,是否混入异物或金属粉未等进行判断。该方法对不能靠近观察的轴承或大型轴承尤为有效。